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MOBILE SURVEYS

In recent years, a new approach for estimating people’s movement in cities has emerged
through mobile phone positioning. As opposed to the more traditional methods of traffic
surveys, automated counts, or individual counters on streets, the use of aggregated and
anonymous cellular network log files has shown promise for large-scale surveys with notably
smaller efforts and costs (Reades, Calabrese, Sevtsuk & Ratti, 2007). In addition, a frequent
data feed from the cellular network has also been argued to demonstrate fine grain over-time
variation in urban movements, which are lacking from the traditional prediction methods (Ratti,
Pulselli, Williams & Frenchman, 2006). However, despite the positivist approach to the new
methodology, additional evidence is needed to show how cellular network signals correlate
with the actual presence of vehicles and pedestrians in the city. The purpose of this paper is

to address this shortcoming by presenting the results of a survey effectuated in Rome, Italy in
January 2007. Using the results of the two-day experiment, we will employ statistical models
to investigate the relationship between empirical pedestrian and traffic counts on the streets of
Rome with the simultaneous Telecom Italia Mobile (TIM]) network signal and traffic prediction.
Secondly, we will explore whether the mobile network data demonstrates the significant time-
dependent variation that is missing from traditional fixed predictors like Space Syntax choice
and integration analysis and could thus describe cities dynamically over time. Finally, we will
also outline some general issues of accuracy in using aggregate mobile network data for

estimating people’s movement in cities.
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INTRODUCTION

As more than half of the world’s population now inhabits cities, and more cities are being
designed and constructed than ever before, the need for analyzing and understanding how cities
function in daily life increases. Most of the knowledge available to us on this topic is concerned
with the social demographics and the constructed elements of cities - streets, buildings, public
spaces, parks etc. Much less is known about how these elements are actually used and what
the temporary patterns of people’s movements between the fixed points look like. As people’s
movements and actions are hard to predict and difficult to track, it has been traditionally

challenging to study the usage dynamics of large cities.

In recent decades, urban mobility modeling has witnessed a rise due to advances in
computational capacity and the development of virtual simulation environments. Several
theories have been developed to explain people’s mobility. Hillier et al. have interestingly shown
that people’s movements in cities are remarkably tied to the geometric configuration of the
street network (Hillier, Hanson & Peponis, 1987). Their quantitative technique of measuring
topological graphs for predicting mobility flows, called Space Syntax, has gained particular
popularity amongst architects and urban designers over the past decades. Others have argued
that streets are more than topological networks and their usage is largely dependent on the
morphology of the urban area (Anderson, 1986; Ellis, 1986; Mathema, 2000). Their approaches
argue that streets are not only channels that allow people to flow between the nodes of an
urban network, but also places of encounter and interaction; they are transit spaces as well

as places. Both approaches suggest, however, that the usage of a street is strongly dependent
on urban form: on the one hand on the arrangement of connections, on the other, its content
and shape. Transportation researchers have studied the impact of amenities, land use and
transit connections on transportation flows (Cervero, 1989; Handy, 1996; Rodriguez & Woo,
2002; Zegras, 2005) and developed quantitative models to predict pedestrian volumes of an
area (Chung, 2003). Yet other scholars have claimed that physical neighborhood characteristics
only have a minor impact on travel behaviour (Crane, 1996). More recent developments in
discrete choice modeling (DCM] have started simulating pedestrian and vehicular movement
dynamically in time (Antonini, Bierlaire, Webber, 2006; Ben-Akiva et al., 1997). Even though
most researchers argue that urban form does affect pedestrian activity, and accept that mobility
patterns can be at least partially predicted, there does not seem to exist an agreement on how
and to what extent. Overall, the scientific explanations of mobility flows present multiple views
and a lack of consensus and an empirical methodology for confirming the theories is much

awaited.

Recent developments in portable communication have rendered mobile phones increasingly

affordable and popular, which makes mobile network logs appealing for aggregate analysis
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of urban population flows. The work on the geographic analysis of mobile phone log files
effectuated thus far has mainly centered on two aspects: the positioning of individual users for
a variety of location based services (LBS), social networking and individual tracking purposes
(Ohmori, Harata, Nakazato, 2005; Laineste, 2003) and probing the mobile data for vehicular
traffic analysis (Kummala, 2002; Rose, 2006; cf. chapter 11). Relatively little work has been done
to analyze the aggregate movements of people in the city through mobile phone data. This has
been attempted in a few projects at MIT's SENSEable City Laboratory (Ratti, Pulselli, Williams &
Frenchman, 2006; Ratti, Sevtsuk, Huang & Pailer, 2005; Calabreses, Reades & Ratti, 2007), and
Tartu University in Estonia (Ahas, Aasa, Mark, Pae & Kull 2007) . This lack is probably caused by
the difficulty to obtain the data and the uncertainty about how well mobile traffic data represents
the actual mobility of people in cities. Yet, for urban planners, this is the most awaited kind of
analysis, which could possible yield empirical evidence for explaining large scale dynamics of an

urban population.

The mobile network data also has its reservations. Compared to the more detailed information
available in origin and destination surveys, and DCM models, aggregated analysis of mobile
network logs does not yet inform us where people’s journeys start and end. Instead, the

data only describes how many callers are where at any given time. However, this qualitative
shortcoming is counterbalanced by a quantitative advantage: the network logs can be
obtained from a city-wide telecom system that is already in place with relatively minor effort.
Furthermore, the data can theoretically be sampled in real-time for a period of any length.
These are the promising advantages of mobile network data. The purpose of this paper is to
analyze how accurately and reliably the data describes the actual presence of people on city
streets. Using Rome as a case study, we will be addressing two main questions. First, do the
vehicle estimates (BSC data) and overall network activity measures (Erlang data) on Telecom
Italia’s network correlate with empirical observations of vehicles and pedestrians on specific
streets in Rome? And secondly, does mobile phone data predict additional over time variation in

mobility patterns that is missing from traditional fixed predictors?

MEASURES

Predictors

In Italy, there are now more registered mobile phones than people '. The data used in this
paper comes from Telecom Italia (TIM), the largest service provider in the country. Besides
TIM, there are three other large service providers in Rome: Omnitel Vodafone, Wind and Blue.

TIM is currently market leader in the city, supplying about 40.3% of the share. This constitutes
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approximately one million users in Rome, less than half of the city’s population. However, TIM’s
data used in this study does not describe the activity of all the registered users in Rome, but only
those who were actively engaged in phone calls during the measurement periods. In particular,
we will be using two distinct sources of TIM’s network data: 1) traffic information from Erlang
measurements of individual antennae and 2] aggregate vehicular traffic predictions from Base
Station Controllers (BSC). We use Erlang in the models as a question predictor for pedestrian

counts, and BSC_veh as a question predictor for vehicle counts.

Erlang measurements are commonly used for assessing aggregate mobile network traffic in
particular cells. An Erlang measure is essentially a use multiplier per unit time. The use of one
mobile phone for one hour in a particular cell constitutes one Erlang, whereas the use of two
phones for half an hour each also constitutes one Erlang. Each network cell has a unique Erlang
value at any given time, depending on the amount and length of calls processed by that cell. In
this study, Erlang data from selected cells in Rome was measured at 15 minute intervals during

two days as shown in the sample in Illustration 8.1.

Illustration 8.1 - Example of Erlang values

Erlang Values

CellID RM25 RY36 RK38 RJ98 RMO1
12/01 08:00..08:15 16277 1219 16277 7056 3730
12/01 08:15..08:30 22543 1170 22543 9393 6350
12/01 08:30..08:45 29100 1302 29100 12571 8722
12/01 08:45..09:00 38321 1636 38321 12338 8320
12/01 09:00..09:15 53393 2224 53393 16715 8689
12/01 09:15..09:30 62582 3124 62582 23185 11347
12/01 09:30..09:45 64678 2843 64678 21049 10999
12/01 09:45..10:00 72001 3316 72001 25904 13380
12/0110:00..10:15 69800 2905 69800 24433 12184
12/0110:15..10:30 76793 4313 76793 30870 12107

For the purpose of this analysis, we transformed the Erlang values in TIM’s dataset by dividing
the raw measures by the area of the given cell and the amount of antennae in that cell. This
resulted in an Erlang measure that shows how much call volume is processed in each cell per

equal unit area and a single antenna.

In addition, estimates for the number of calls originating from vehicles were obtained from

two base-station controllers (BSC] in the north-eastern part of the city center. Each BSC
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monitored the activity in a set of individual cells and aggregated the information into a
continuous rectangular grid of 250x250 meters, covering the area of multiple cells. Thus each
BSC measurement estimated how many calls within each 250x250 meter “pixel” in a 15 minute
time period had occurred, and filtered out those that had a mean speed above 8km/h during

the call, categorizing the latter as the number of vehicles. Unlike Erlang, which was generated
by all calls that were processed by a given cell, BSC measures were obtained by anonymously
triangulating all clients who engaged in calls, determining which pixel they were located in.

The callers’ position was obtained by using a combination of methods including cell Id, angle of
arrival, timing advance, and signal strength triangulation. The raw information was presented in
matrix form, where each value corresponded to the estimated number of calls from vehicles in a

certain pixel, as shown in Illustration 8.2.

Illustration 8.2 - BSC estimates for calls originating from vehicles

HOUR 8; MINUTES 15

YEAR 2007; MONTH 1; DAY 12

CITY Roma

NROWS 48; NCOLS 56

ULXMAP 785566.000000; ULYMAP 4650585.000000
XDIM 250.0; YDIM 250.0

0000O0OO0OO0CO0OT1TO0O0OOOOOOOOTTOOOOOOODOT1TOOG GO
0o00O0O0OO0OO0OCO0OO0OOOT1T11TO0O0O0OO0ODODODOOOOOOODODOOOO GO
T1T0000000011011T21710000003000001112
060o0oo000O0OO0OCO0CCT1T223341110000000000O0O0O0CO
002000000017101722000000O0000000O0DO0COCO

In addition to the two question predictors from the mobile network, a few additional control
predictors were used. Major_arterial was a dichotomous predictor indicating whether a street
was classified as a major arterial road in the Navteq street database or not. Two commonly used
space syntax measures were also included: integration with a radius of 400m (int_r400) and
choice with a radius of 3200 m (choice _r3200] (a more detailed explanation of these variables
can be found in Hillier (1984 (1989)). The value for the integration analysis with the radius of
400 meters (int_r400) is commonly used in space syntax as a predictor of average pedestrian
flow on a particular street. The choice analysis with a radius of 3200 meters is commonly used
for vehicular traffic predictions. Since the choice values are computed with an exponential
distribution, we followed a common practice of transforming the choice_r3200 values by a log2.
Finally, Weekend was a dichotomous predictor indicating if the count was measured on a Friday
or Saturday. Illustration 8.3 presents the descriptive statistics of the predictors and outcomes

used in the models.
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Illustration 8.3 Descriptive statistics of the outcomes and predictors

Mean ;tec:/-iation Range Min. Max. N

Pedestrians 198.28 216.63 1046.00 10.00 1056.00 396
Vehicles 141.97 128.26 634.00 2.00 636.00 374
BSC_veh 0.78 0.83 3.50 0.00 3.50 396
Major_arterial 0.33 0.47 1.00 0.00 1.00 396
Raw cell_Erlang 35017.26 29893.93 92737.00 116.00 92853.00 396
Cell_Erlang_norm

(question) 0.05 0.04 0.12 0.00 0.13 396
Int_400 33.42 19.37 74.61 -1.00 73.61 374
Log2_ch_r3200 15.51 3.72 14.05 417 18.22 374
Weekend 0.50 0.50 1.00 0 1 374

Outcomes

Based on the availability and geographic distribution of Erlang and BSC data, 9 locations in

the neighborhood around the Termini train station in Rome were selected for comparative
pedestrian and traffic counts. This area was attractive for the study because it was well

covered in TIM's dataset and it contained a uniformly dense urban fabric with ostensibly many
pedestrians and cars. The counts were effectuated on January 12t" and 13!, a Friday and

a Saturday. On both days, six counters counted vehicles and pedestrians from 8am to 8pm

on 18 street segments using tally-sheets. Pairs of two counters circulated between three
particular street intersections in a continuous loop, counting the two intersecting streets at
each intersection for 15 minutes at a time, returning to the same place once every hour. The
intersections and street segments were chosen after a personal site visit, so that the seemingly
largest intersection in each cell of interest gave a representative estimate for the pedestrian and
vehicular traffic in that cell. The counting period was chosen to match the 15-minute Erlang and
BSC measurement periods. Illustrations 8.4 and 8.5 below illustrate the chosen streets that

were counted and the corresponding Erlang cells and BSC pixels.

ANALYSIS

Naturally the 9 intersections that were chosen varied in exact size. As the mobile phone data
estimates referred to the whole coverage area of network cells or BSC pixels, and not individual
streets, then the representational “weight” of each counted street was different. Furthermore,

all streets where counts occurred had a slightly different importance relative to the total set of
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streets within each cell or pixel. Some streets were clearly the busiest ones out of all the streets
within a given cell, whereas others were less hierarchal compared to the rest of the streets in
the pixel. Therefore some count locations naturally captured a larger proportion of traffic in
their area than others. These location differences and the repeated nature of the counted data
(every location was counted 11 times a day, and 22 times during both days) demanded that

the similarity of variance at the same locations during different counting times be taken into
account. For specifying a statistical model this suggested that a multilevel structure of repeated
measurements be used. A multilevel structure was therefore specified in the SAS software
MIXED procedure using a random effects model. Using this model, we will first proceed with the

analysis of the vehicle prediction and subsequently turn to pedestrian counts.

TIM’s Vehicle Traffic Prediction

First, the unconditional model M1 was specified as a base line against which we could compare
the gains of adding predictors from the mobile network. The unconditional model allowed the
intercepts to have random effects at different counting locations. The estimated parameters of
this model are shown in Illustration 8.6. The fixed effect of the intercept across all locations
showed that the average count during the first observation period (8.00-8.15am) was 141.97
vehicles. The random effects part of the models show how the intercepts and residuals vary
across the counting locations. We see that intercepts did vary significantly between locations
(p <0.01), which indicates that a large portion of the variation (81%) can systematically be
attributed to differences amongst counting locations. The remaining 19% of all variation was
attributable to the residuals of individual streets, which suggests that the differences between
streets were a much greater cause of variation than the hourly fluctuations of vehicles on

particular streets.

After specifying the unconditional model, we added only BSC_veh as a predictor to model M2

in order to test if BSC_veh alone could explain variations in the counted traffic data and thus

be singularly used as a reliable estimate for vehicle traffic on particular streets. The results
showed that BSC_veh did have a significant fixed linear effect on the vehicle counts: a one point
change in the BSC_veh estimate was associated with a 20.01 point change in vehicle counts

(p <0.001).

Looking at the random effects, we see that the improvement in prediction between different
locations attributable to TIM's vehicle prediction in M2 can be summarized by the proportional
decline in the between-street residual variance. This shows that Telecom ltalia’s vehicle
prediction could alone explain 31% of the variation in our traffic counts. This correlation was

quite good, considering that most (81%) of the variation in the counts came from differences
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Taxonomy of fitted multilevel models describing the relationship between the Illustration 8.6
empirical vehicle counts and TIM's vehicle traffic estimates, cntrolling for road- Taxonomy of fitted

classes and Space Syntax choice estimates (n streets= 18, n counts= 342) multilevel models

Model predicting vehicle
Predictor M1 M2 M3 M4 counts.
(uncond.)
Fixed Effects:
Intercept 141,97%** 127.22%** 7.84 56.35
(28.80) (24.16) (92.48) (75.84)
BSC_veh 20.01%* -36.74
(8.06) (29.63)
Road class 150.78** 136.58%*
(46.90) (38.26)
Log2_ch_r3200 6.64 3.71
(6.03) (4.93)
Weekend -43.96%** -48 . 52%**
(5.46) (7.75)
BSC_veh * Road class 18.89
(17.47)
BSC_veh * Log2_ch_r3200 2.02
(1.98)
BSC_veh*Weekend 12.39
(9.72)
Random Effects:
o11 (intercept) 13950** 9649.54**  7661.08** 4948.68**
022 (BSC_veh slope) 746.90* 682.04*
0e2 (residual) 3286.03*** 2764.02%** 2787,65*** 2415.,83***
Fit Statistics:
-2LL 4157.6 4098 4066.2 4000
AIC 4161.6 4106 4070.2 4008

Significance level ~p<0.10, *p<0.05, **p<0.01, *** p<0.001
Cell etries are coefficients and standard errors

between streets. The within-street residual variance declined by 16% with the addition of
BSC_veh, which means that Telecom’s traffic estimate also explained 16% of the traffic over
time variation on the same streets. In addition we see that the random effect of BSC data (022
BSC_veh slope) was also significant at a 95% confidence level, suggesting that the relationship
between TIM's traffic estimate and the actual counts varied from street to street. We thus
conclude that a significant relationship of BSC_veh and empirical counts is found, and 31% of
the between-street variations as well as 16% of the within-street variation in vehicular traffic
are explained by TIM's vehicle prediction. These findings are encouraging given the very small
mean and range of BSC_veh values. Furthermore, we know that BSC_veh is an estimate for

an urban area of 250x250 meters, which includes many different streets, whereas the counting
data was collected from only specific streets within each square. Based on these results we can
hypothesize that using the BSC_veh values for estimating traffic at a larger scale than singular
streets (for instance, block level, neighborhood level or even district level) might result in even

better predictions.
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Illustration 8.7 Taxonomy of fitted multilevel models describing the relationship between the

Taxonomy of fitted empirical pedestrian counts and TIM's Erlang estimates, cntrolling for road-

. classes and Space Syntax integration values (n
pedestrian count streets= 18, n counts= 342)
models. Model
Predictor M1b M2b M3b M4b
Fixed Effects: (uncond.)
Intercept 164.98%** 143.15%* 73.16 25.09
(37.61) (37.79) (76.66) (77.80)
Erlang_norm 493.43%* 926.68*
(177.10) (441.92)
Road class 43.62 92.83
(80.86) (81.00)
Integration_R400 2.25 1.25
(1.99) (2.00)
Weekend 2.68 3.78
(7.71) (12.5)
Road class * Erlang_norm 328.28
(499.08)
Integration_R400 * Erlang_norm 3.31
(9.33)
Weekend*Erlang_norm 985.51**
(299.85)
Random Effects:
o11 (intercept) 23791%% 22999%* 23925%*  22988%**
022 (Erlang slope) 1] 1]
02 (residual) 5544.84%** 5441.,53*%** 5558,52%%*% 5201,73%**
Fit Statistic:
-2LL 4352.9 4332.8 4331.1 4257
AIC 4356.9 4338.8 4335.1 4263

~p<0.10, *p<0.05, **p<0.01, *** p<0.001
Cell etries are coefficients and standard errors

We next explored whether the addition of TIM’s traffic estimate to a different conditional model,
which already contained three static predictors: road-class, radius 3200m choice estimate from
Space Syntax analysis, and a dummy variable for weekend, could explain any dynamic variation
in the outcome. Since both road classifications and space syntax estimates provide a fixed
average value for each street, regardless of the fluctuations in traffic that occur on the street

in an hourly, daily or weekly scale, we expected the BSC_veh estimates, collected at 15min

intervals, to improve the model significantly

The results showed that the addition of the BSC data to the conditioned model that already
included road_classes, space syntax choice values and weekend, decreased the within-street
residuals by 13%. Thus we find that there was indeed a component of over time variations in the
traffic counts explained by TIM's traffic predictions, which was not be predicted through the fixed

predictors. Again, the results are encouraging even though the majority of over time residual
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variations on individual streets still remained unexplained with TIM’s predictor in the model and
we conclude that the BSC_veh estimates do show promise for illustrating how vehicular traffic

flux oscillate at particular streets during different hours of the day.

ERLANG AND EMPIRICAL PEDESTRIAN COUNTS.

We will now turn to the analysis of how the antenna level Erlang measures predicted the
pedestrian flux on particular streets. Since the analysis is very similar to the vehicular traffic

analysis above, we can directly turn to the findings.

The unconditional model for predicting pedestrian flux through TIM’s Erlang measurements was
specified similarly to the unconditional vehicle model. The results of the pedestrian models are

shown in Illustration 8.7.

The intercept of the unconditional model, used as a baseline, showed that during the first
counting period (8.00 - 8.15am) there were on average 164.98 pedestrians on a street. The
random effect of the intercept shows that the counts at different locations did vary significantly
(p<0.01).

We next added the Erlang predictor to the model and tested whether Erlang alone would reveal
a significant relationship with the pedestrian counts. The resulting estimated Erlang fixed effect
captured the initial relationship between the normalized Erlang and pedestrian counts across
all locations. This effect was significant and showed that between 8.00 and 8.15AM, locations
that differed in one point with respect to normalized Erlang, differed by 493.43 pedestrians

(p < 0.001). However, the random effect of Erlang (022) was zero, which implies that there is no
evidence to suggest in our sample that the relationship between Erlang values and empirical
pedestrian counts varied between locations. Rather, we only see the fixed effect of Erlang

suggesting that this relationship is uniform across all counted streets.

Looking at the residual changes, we find that the between-street residual variance decreased by
only 4% with the introduction of Erlang to the model and the within-street variation decreased
by 2%. This led us to conclude that Erlang did not improve the between-streets or within-street
predictions of pedestrians much. Given that Erlang measures were distributed across all streets
in the whole cell to explore the activity on specific single streets, it was not surprising to find
very little correlation between the two. Furthermore, Erlang measures were generated by all
calls from within the cell, not only from pedestrians on the streets, but also calls from parks,
buildings, vehicles and so on. We concluded that in the given sample, the Erlang measure alone

predicted little pedestrian activity on specific streets.
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Lastly, we also explored whether the addition of Erlang data could explain the dynamic
variations of pedestrians at specific streets, which a model with fixed predictors could not
account for. The fixed predictors that were added to the unconditional model were Road Class
and the radius 400m integration value from space syntax. A dummy variable for the weekend

was also included. The estimated coefficients of this model (M3b) are shown in Illustration 8.7.

While the fixed effects of the above mentioned control predictors remained insignificant, Erlang
in M4b did have a significant relationship to the outcome. The Erlang coefficient suggested

that a one point change in Erlang values was on average associated with a 926.68 (p < 0.05)
point change in pedestrian counts, controlling for weekends, road classes and choice values.
The decrease in residual variance suggested that the addition of Erlang to a controlled model
did improve the pedestrian prediction, but not much: Erlang accounted for 4% of the between-
street residual variance and 6% for the within-street residual variance. The relationship
between Erlang values and empirical pedestrian counts thus led to the conclusion that Erlang
measurements were only marginally successful in predicting pedestrian flux on the chosen

streets.

This makes intuitive sense. An important complication in relating Erlang values to actual
population distribution is the changing nature of callers’ behaviour. When the total call volume
increases, for instance, then the sample size that generates an Erlang value also increases
and we should expect a more accurate prediction from Erlang during the hours of large call
volume. The same concern applies to the changes in average call length. If average calls are
systematically longer during certain hours of a day, then Erlang values would increase, but
the actual population distribution could remain the same. In addition, the average call length
could also vary by area- people in residential areas might make longer calls than people in

a noisy shopping area during the same hour. Unfortunately the data on call lengths and user
behaviour was not available to us in this study and remains to be tested in future research.

As a preliminary test for these variations, the students in Rome also counted the number of
passing pedestrians who were using cell phones. The analysis of these data showed that there
was a significant positive correlation between Erlang and the number of pedestrians observed
talking on the phone during the counts (R2 = 6%, t=5.01; p < 0.0001) and that the proportion

of pedestrians using mobile phones did significantly vary during different hours of the day as
well as across different locations (p < 0.05). This suggests that when a larger proportion of
pedestrians use their phones on the street, Erlang values are significantly larger, whereas the
amount of pedestrians can remain similar. In future work using Erlang values for estimating
callers’ distribution, it would thus be important to account for how the total number of calls
and the average call length vary throughout a typical day and to consider these variations when

interpreting the relationship between Erlang and the caller’s distribution.
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CONCLUSION

Does the usage of a mobile phone network at a particular time reflect the distribution of people
in a city? And could the data from the network dynamically predict the amount of vehicles and

pedestrians on particular streets?

Indeed, to at least some extent, suggest the findings of our study, which compared two types

of mobile network indicators with empirical counts of vehicles and pedestrians on the streets
of Rome. First, we used the BSC measures which positioned each phone call geographically
and measured the caller’s speed of movement during the call, as a predictor for vehicular
traffic. Secondly, we used the Erlang measures, which indicate the total usage intensity of each

network antenna, as a predictor for pedestrian traffic.

Our analysis showed that Telecom Italia’s estimate for mobile phone calls from vehicles was
successful in predicting approximately a third of the traffic patterns at specific streets. This
finding corroborates the idea of using vehicle estimates from a mobile-phone network in future
transportation analysis. Telecom ltalia has in fact already started using these measures to
estimate the traffic conditions on the highways around Rome. For urban planners, this data now
opens up an opportunity to investigate the driving dynamics in different neighborhoods with
much less effort than offered by the traditional origin destination surveys and traffic counts. The
data could also be used for assessing the role of urban design, land use and public amenities in

travel mode choice in different neighborhoods (cf. chapters 7, 10, 11 and 13).

Erlang values were marginally, though significantly, successful in predicting pedestrian flux

at particular streets. Only 2-4% of the pedestrian flow was forecast by the data. This finding
was discouraging, but intuitively reasonable. Erlang measures at antennae provide an overall
indication of call volumes processed by the particular cells and give no information on whether
the callers were still or moving, indoors or outdoors, and are therefore less likely to correlate
with a specific subset of callers, such as pedestrians used in this study. Since the measures
are taken at the antenna level, the data also provides less accuracy and certainty for predicting
the true location of callers. However, the relative ease of access and ubiquity of the Erlang in
any mobile phone network still make the data very attractive for further study. Using a larger
study area and accounting for the typical calling behaviour could potentially yield more accurate
predictions of the actual population distribution at a particular time. Another interesting alley
of research already emerging, is to cluster Erlang patterns at cells that are used similarly over
time into sensible groups, in order to functionally describe urban areas that behave similarly

over time.
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Mobile networks thus remain interesting and valuable resources of information for urban
analysis. Cell phones, though only as proxies, can be used to describe other human activities
than calling, and their continuously expanding adoption worldwide provides an unprecedented
sample in studying the daily activities of urban dwellers. Unlike other electronic devices that
register usage patters (i.e. cashier counters, ATMs, subway gates etc.) in fixed positions, mobile
phones travel along with people as they inhabit the city in daily life, thus describing not only how
places are used, but also the personal experience of people in cities. The availability of mobile

network data offers an entirely new type of evidence and scale for the dynamic study of cities.

NOTES

1 1.24 mobile phones per person, CIA World Factbook 2005.
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